If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-33=6
We move all terms to the left:
x^2+10x-33-(6)=0
We add all the numbers together, and all the variables
x^2+10x-39=0
a = 1; b = 10; c = -39;
Δ = b2-4ac
Δ = 102-4·1·(-39)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-16}{2*1}=\frac{-26}{2} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+16}{2*1}=\frac{6}{2} =3 $
| k/5=15/18 | | 5(3x-2)=5(4x=1) | | -9g-3=-3(3g=2) | | 3(4x-9)=153 | | -1=4.4x-6.94 | | -1=7p-5-3 | | X*x-4x-8=0 | | u-5u=16 | | 4b+6+8=-2 | | 10+6x−4=−15+9x−3x | | p+2-5=-3 | | -3+3x=x+2(x-4x) | | 900=(n-2)(180) | | -2/3x-3/2=1 | | 3y=16.2 | | -7m+6m=-7 | | 0.5=0.83^x | | X(3)-12x+11=0 | | H=-0.5t^2+3tt2 | | 7x(2)-14x+7=0 | | X(2)+5x-35=3x | | -16(x)^2+60x=16 | | -6v-9=105 | | 63+9u=16u | | -5z(z+8)(z-7)=0 | | 6(2x-4)=132 | | 6(x-4)=132 | | 2(x-4)=132 | | 7a+47=180 | | x^2-18x-73=-10 | | 7a+47=360 | | 5x-13=24×-2 |